Answer:
a.
(ascent)
(descent)
b.
![\vec{v}=(1)/(√(2))[\hat{i}+\hat{j}]](https://img.qammunity.org/2021/formulas/mathematics/college/qow3r595gvssezm6nx1ve48766vy394t2o.png)
Explanation:
a. The function is given by:
![F(x,y)=e^(-(x^2/6+y^2/6))](https://img.qammunity.org/2021/formulas/mathematics/college/mrmafp2i3nmejyln3d14hxbi77n6b35qcb.png)
the point is P(-3,3)
a. The unit vector that gives the direction of the steepest ascent is necessary to compute the gradient of F(x,y):
![\bigtriangledown F(x,y)=e^(-(x^2/6+y^2/6))(-(x)/(3))\hat{i}+e^(-(x^2/6+y^2/6))(-(y)/(3))\hat{j}\\\\\bigtriangledown F(x,y)=-(1)/(3)e^(-(x^2/6+y^2/6))[x\hat{i}+y\hat{j}]](https://img.qammunity.org/2021/formulas/mathematics/college/g8kfwelo7fs0s7yyip7vwc9x5u64rly5uh.png)
The, it is necessary to evaluate in the point P, and to compute the norm of the vector in order to get the unit vector:
(ascent)
for the steepest descend you have
![\vec{u}=-(\bigtriangledown F(-3,3))/(|\bigtriangledown F(-3,3)|)=-(1)/(√(2))[\hat{i}-\hat{j}]](https://img.qammunity.org/2021/formulas/mathematics/college/bauzzmgr1xzqyacmzp52j7w5cw3mm350ph.png)
b.
the vector with the direction of no change is a vector perpendicular to grad(F):
![\bigtriangledown F(-3,3)\cdot \vec{v}=0\\\\e^(-3)v_1-e^(-3)v_2=0\\\\v_1=v_2](https://img.qammunity.org/2021/formulas/mathematics/college/dzif0zypxbiu7ua1ar0slwj0pzq0f5hgyn.png)
furthermore, v is an unit vector:
![√(v_1^2+v_2^2)=1\\\\v_1 ^2+v_1^2=1\\\\2v_1^2=1\\\\v_1=(1)/(√(2))=v_2](https://img.qammunity.org/2021/formulas/mathematics/college/e9ll7c0hj4ma1d6rzo8fweatia46agm4vc.png)
then, the vector is:
![\vec{v}=(1)/(√(2))[\hat{i}+\hat{j}]](https://img.qammunity.org/2021/formulas/mathematics/college/qow3r595gvssezm6nx1ve48766vy394t2o.png)