62.5k views
5 votes
Factor 1-2sin^2(x)+sin^4(x)

1 Answer

7 votes

Answer:


\left(1 - \sin^(2)(x)\right)^(2).

Explanation:

Notice that "
1" is equal to "
1^(2)" whereas
\sin^(4)(x) = {\left(\sin^(2)(x)\right)}^(2). Therefore:


\begin{aligned} & 1 - 2\, \sin^(2)(x) + \sin^(4)(x) \\ =\; & 1^(2) - 2\, \sin^(2)(x) + {\left(\sin^(2)(x)\right)}^(2)\end{aligned}.

Make use of the identity
(a - b)^(2) = a^(2) - 2\, a\, b + b^(2). In this case, set
a = 1 whereas
b = \sin^(2)(x). Therefore:


\begin{aligned} & 1^(2) - 2\, \sin^(2)(x) + {\left(\sin^(2)(x)\right)}^(2) \\ =\; & a^(2) - 2\, a\, b + b^(2) \\ =\; & (a - b)^(2) \\ =\; & {\left(1 - \sin^(2)(x)\right)}^(2)\end{aligned}.

User David Goodwin
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories