6.0k views
2 votes
Purchasing A regional survey found that 70% of all families who indicated an intention to buy a new car bought a new car within 3 months, that 10% of families who did not indicate an intention to buy a new car bought one within 3 months, and that 22% indicated an intention to buy a new car. If a family chosen at random bought a car, find the probability that the family had not previously indicated an intention to buy a car. Harshbarger, Ronald J.. Mathematical Applications for the Management, Life, and Social Sciences (p. 479). Cengage Learning. Kindle Edition.

User Rendicahya
by
8.0k points

1 Answer

6 votes

Answer:

If a family chosen at random bought a car, we need to find the probability that the family had not previously indicated an intention to buy a car = P(I'|B) = 0.3362

Explanation:

Let the event that a family that intends to buy a car be I

Let the event that a family does not intend to buy a car be I'

Let the event that a family buys a car in those 3 months be B

Let the event that a family does not buy a car in those 3 months be B'

Given,

P(B|I) = 0.70

P(B|I') = 0.10

P(I) = 0.22

P(I') = 1 - P(I) = 1 - 0.22 = 0.78

If a family chosen at random bought a car, we need to find the probability that the family had not previously indicated an intention to buy a car = P(I'|B)

The conditional probability P(A|B), is given as

P(A|B) = P(A n B) ÷ P(B)

So,

P(B|I) = P(B n I) ÷ P(I)

P(B n I) = P(B|I) × P(I) = 0.70 × 0.22 = 0.154

P(B|I') = P(B n I') ÷ P(I')

P(B n I') = P(B|I') × P(I') = 0.10 × 0.78 = 0.078

P(B) = P(B n I) + P(B n I') = 0.154 + 0.078 = 0.232

P(B') = 1 - 0.232 = 0.768

P(I'|B) = P(B n I') ÷ P(B)

= 0.078 ÷ 0.232 = 0.3362

Hope this Helps!!!

User Kamil Bednarz
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories