Answer:
![√(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zk4ls2i7rszmygzgqi2kkfexuqtms266jg.png)
Explanation:
Just adjusting the question, since tan (0)=0 and we have a description of a trigonometric interval:
![tan (\theta)=-1, sec(\theta)=?\:for \:(3\pi)/(2) < \theta < 2\pi?](https://img.qammunity.org/2021/formulas/mathematics/college/xcq8585p9ah9937t9fqhvgbs5z42kl1oyn.png)
Therefore, let's go for the secant of
![\theta](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xa55iai8ybj0afnpxzra0ba7b2i6zcastf.png)
1). Well, firstly this interval:
is the IV quadrant, where the tangent assumes negative values.
2) One of the notable arcs we have is the
![tan((\pi)/(4))=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/t339l571g8wvy5dis1fqi58czpe4vmhkxt.png)
3) Then If we subtract 360º-45º=315º or
rad
So this is the arc we want
So we have
In Radians:
In degrees:
![tan(315\º)=-1](https://img.qammunity.org/2021/formulas/mathematics/college/3vumi0tzjojvivur5pcb7n0b2lhcerxvkw.png)
4) Finally, rationalizing radicals on the denominator:
![sec(\theta)=(1)/(cos(\theta))=sec((7\pi)/(4))=(1)/(cos((7\pi)/(4)))=(1)/((√(2))/(2))\\\\sec((7\pi)/(4))=(1)/((√(2))/(2))=1* (2)/(√(2))=(2√(2))/(2)=√(2)](https://img.qammunity.org/2021/formulas/mathematics/college/3tw08oht084e08we2cpslq8jyo9xvvj8s7.png)