Answer:
The cost function is
.
The average cost of 1000 shoes is $19.38.
Explanation:
We define the marginal cost function to be the derivative of the cost function or
.
To find the cost function,
we need to integrate the marginal cost function
![\int {C'(x)} \, dx =C(x)\\\\\int \:16+(200)/(x-1)dx\\\\\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx\\\\=\int \:16dx+\int (200)/(x-1)dx](https://img.qammunity.org/2021/formulas/mathematics/college/aibtpdeggeilrl1ynm3gidiwmaxul493fh.png)
![\int \:16dx=16x](https://img.qammunity.org/2021/formulas/mathematics/college/6vpa3xo3p445bprg0ov1gashud90kkcecp.png)
![\int (200)/(x-1)dx=200\ln \left|x-1\right|](https://img.qammunity.org/2021/formulas/mathematics/college/brrb6ql3wu9phkk062fcce6et1gxgmvqkk.png)
![\mathrm{Add\:a\:constant\:to\:the\:solution}\\\\C(x)=\int \:16+(200)/(x-1)dx=16x+200\ln \left|x-1\right|+D](https://img.qammunity.org/2021/formulas/mathematics/college/3a0fcqwkqahhoxz84yl1d7dyqg5ckk0ybh.png)
We know that the fixed costs are $2,000 per week, so the constant
is equal to 2000, and the cost function is
![C(x)=16x+200\ln \left|x-1\right|+2000](https://img.qammunity.org/2021/formulas/mathematics/college/wlpbqhs5zzy7dzzoj7v5sgympdorb27njl.png)
If
is the cost function for some item then the average cost function is,
![\overline{C}\left( x \right) = \frac{{C\left( x \right)}}{x}](https://img.qammunity.org/2021/formulas/mathematics/college/907gdwgm4mv4mt0ovt47ydoxaxm3ipybcr.png)
We know that 1,000 pairs of shoes are produced each week, so the the average cost is
![\overline{C}\left( 1000 \right) = \frac{{C\left( 1000 \right)}}{1000}=(16\cdot 1000+200\ln \left|1000-1\right|+2000)/(1000) \\\\\overline{C}\left( 1000 \right)=(200\ln \left(999\right)+18000)/(1000)\approx19.38](https://img.qammunity.org/2021/formulas/mathematics/college/eqig213e9el9fsgae86swevyw24pwan6p0.png)