Answer:
![\bar X = (\sum_(i=1)^n X_i)/(n)](https://img.qammunity.org/2021/formulas/mathematics/college/ns1mchdnk6shlvnixd6eiunff164m4m06k.png)
![\bar X =(58+62+66+70+74+78+54)/(7)=66](https://img.qammunity.org/2021/formulas/mathematics/college/1992cylm1ctavjyjft85ui8lkm6njgaai9.png)
![\sigma = \sqrt{(\sum_(i=1)^n (X_i- \bar X)^2)/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/455v40pt4lton8djpi6slcvnhnoi4cnzsl.png)
![\sigma =\sqrt{((58-66)^2 +(62-66)^2 +(66-66)^2 +(70-66)^2 +(74-66)^2+ (78-66)^2 + (54-66)^2)/(7)}= 8](https://img.qammunity.org/2021/formulas/mathematics/college/waq30anyob9jup6wldxpwb5i6jyreq2ks4.png)
b. 66,8
Explanation:
We have the following data given:
58 , 62 ,66 ,70 , 74 , 78 , 54
Since the data can be modelled with a normal distribution then the best estimator for the true mean is the sample mean given by:
![\bar X = (\sum_(i=1)^n X_i)/(n)](https://img.qammunity.org/2021/formulas/mathematics/college/ns1mchdnk6shlvnixd6eiunff164m4m06k.png)
And replacing we got:
![\bar X =(58+62+66+70+74+78+54)/(7)=66](https://img.qammunity.org/2021/formulas/mathematics/college/1992cylm1ctavjyjft85ui8lkm6njgaai9.png)
And we can estimate the population deviation with the following formula:
![\sigma = \sqrt{(\sum_(i=1)^n (X_i- \bar X)^2)/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/455v40pt4lton8djpi6slcvnhnoi4cnzsl.png)
And replacing we got:
![\sigma =\sqrt{((58-66)^2 +(62-66)^2 +(66-66)^2 +(70-66)^2 +(74-66)^2+ (78-66)^2 + (54-66)^2)/(7)}= 8](https://img.qammunity.org/2021/formulas/mathematics/college/waq30anyob9jup6wldxpwb5i6jyreq2ks4.png)
And the best solution for this case is:
b. 66,8