Answer:
Q = 2.3 * 10⁻⁴ Gy
Step-by-step explanation:
The mass of the human body, M = 70 kg
Mass of potassium,
![m_(p) = 140 g](https://img.qammunity.org/2021/formulas/physics/college/gl4zthoc7xizoe75c1vkng46tkaf9h92yp.png)
Atomic mass of potassium, MM = 39.1 g/mol
The half life of the isotope 40K,
![t_(1/2) = 1.3 * 10^(9)](https://img.qammunity.org/2021/formulas/physics/college/e5zdkmjiusbzdeslguwmgbgcsdfoaq51jf.png)
Number of moles of potassium,
![n = (m_(p) )/(MM)](https://img.qammunity.org/2021/formulas/physics/college/5oa30m0yvg87nqsth4iqny4a7iu9qbws5z.png)
![n = (140)/(39.1)](https://img.qammunity.org/2021/formulas/physics/college/jvtcmvohaey76q9wofs0qpoq1ygw6da71d.png)
n = 3.58 mols
Let the number of atoms in the potassium be N
Number of mols of potassium,
![n = (N)/(6.02 * 10^(23) )](https://img.qammunity.org/2021/formulas/physics/college/zsns8fqji830l8egn1129teyug9pocdw4y.png)
![N = 6.02 * 10^(23) * n\\N = 6.02 * 10^(23) * 3.58\\N = 2.156 * 10^(24) atoms](https://img.qammunity.org/2021/formulas/physics/college/qr6c6p5icbpg51dy1h0w8td6bpzrcxns5m.png)
The 40K isotope has a natural abundance of 0.012% = 0.00012
That means the number of atoms originally in the 40K isotope is,
![N_(0) = 0.00012 * 2.156 * 10^(24)](https://img.qammunity.org/2021/formulas/physics/college/8yrif757b0baksj4fu2sdlviiuoyq8r4er.png)
![N_(0) = 2.5875165 * 10^(20) atoms](https://img.qammunity.org/2021/formulas/physics/college/69zupgrghn779re75m5vnn8b4mq4crpwmn.png)
Number of atoms remaining after decay
![N_(f) = N - N_(0)](https://img.qammunity.org/2021/formulas/physics/college/7jp4635gjoe6495npinzp2dmf0fxc9s7gr.png)
Decay constant,
![\lambda = (ln 2)/(t_(1/2) )](https://img.qammunity.org/2021/formulas/physics/college/zc4bq8ev9sjw0s7h3o830nzi0tncvrwhrr.png)
![\lambda = (ln 2)/(1.3 * 10^9) \\\lambda = 533.19 * 10^(-12) yr^(-1)](https://img.qammunity.org/2021/formulas/physics/college/xnwfu0l4vxamf9i9nqlm1jug5inyo4camo.png)
The question is asking for the yearly dose, i.e t = 1 yr
![N_(f) = N_(0) e^(- \lambda t) \\N_(f) = (2.5875165 * 10^(20) ) e^{- 533.19 * 10^(-12) *1}\\N_(f) = 2.587516499 * 10^(20)](https://img.qammunity.org/2021/formulas/physics/college/5qfa57eme60lpgih6ef3zococwrgg7q91v.png)
The number of 40K atoms decaying in 1 yr =
![N_(0) - N_(f) = (2.5875165 *10^(24) ) - (2.587516499 * 10^(20))](https://img.qammunity.org/2021/formulas/physics/college/2db4k4e3dyrjy2szmp064jpa3w2zie5m2v.png)
The number of 40K atoms decaying in 1 yr = 1 * 10¹¹ atoms
1 40K atom deposits 1.0MeV of energy into the body
1 * 10¹¹ atoms will deposit 1 * 10¹¹MeV of energy into the body = 10¹⁷ eV
1 eV = 1.6 * 10⁻¹⁹ Joules
10¹⁷ eV = (10¹⁷)*(1.6 * 10⁻¹⁹) Joules
10¹⁷ eV = 0.016 J
The amount of dose a typical body receives in Gy = 0.016/70
The amount of dose a typical body receives in Gy = 2.29 * 10⁻⁴