Answer:
a) 3.195*10^{-3}N/C
b) 5.11*10^{-4}N/C
Step-by-step explanation:
a) to find the induced electric field for different distances you use the following formula:
![\int\vec{E}\cdot d\vec{r}=-(d\Phi_B)/(dt)\\\\E(2\pi r)=-(d\Phi_B)/(dt)\\\\E=-(1)/(2\pi r)(d\Phi_B)/(dt)](https://img.qammunity.org/2021/formulas/physics/college/h6f7zm7vkm6wjatr0rhmcpxwy250oapt9b.png)
the area of the solenoid is constant, hence:
![E=-(1)/(2\pi r)\pi R^2(dB)/(dt)=-(1)/(2r)R^2(dB)/(dt)](https://img.qammunity.org/2021/formulas/physics/college/f32q3vnpcza6s01k1zcx02omecyy4cewb6.png)
where you have assumed that the electric field is perpendicular to the vector of the path integral.
r: distance in which the induced electric field is measured
R: radius of the solenoid = 0.12m
dB/dt: change in the magnetic field: -7.10mT/=-7.1*10^{-3}T/s
a) for r=1.60cm=0.016m you obtain:
![E=-(1)/(2(0.016m))(0.12m)^2(-7.1*10^(-3)T/s)=3.195*10^(-3)N/C](https://img.qammunity.org/2021/formulas/physics/college/thmnh6st9r4x1ttisuu3ri3zga2az0k469.png)
b) for r=10.0cm=0.10m
![E=-(1)/(2(0.10m))(0.12m)^2(-7.1*10^(-3)T/s)=5.11*10^(-4)N/C](https://img.qammunity.org/2021/formulas/physics/college/glz3xkb6z9l8iy43wf8zi0lf4w22k7ngvn.png)