Answer:
The 95% confidence interval for the measurements is [48.106, 53.494].
Explanation:
The average M of this sample is
![M=(1)/(5)\sum_(i=1)^5x_i=(1)/(5)(52+48+49+52+53)\\\\\\M=(254)/(5)=50.800](https://img.qammunity.org/2021/formulas/mathematics/college/3g202hqig1ozuf53fhk0gus3n2458ew3zw.png)
The standard deviation s of this sample is
![s=\sqrt{(1)/((n-1))\sum_(i=1)^5(x_i-M)^2}](https://img.qammunity.org/2021/formulas/mathematics/college/22om5iv97rq6oln727byfchv5e6kid6icp.png)
![s=\sqrt{(1)/(4)\cdot [(52-50.8)^2+(48-50.8)^2+(49-50.8)^2+(52-50.8)^2+(53-50.8)^2]}](https://img.qammunity.org/2021/formulas/mathematics/college/6n70qhrpu91e2mrjabehvkay6e0j2vquc4.png)
![s=\sqrt{(1)/(4)\cdot [(1.44)+(7.84)+(3.24)+(1.44)+(4.84)]}=\sqrt{(18.8)/(4)}=√(4.7)\\\\\\s=2.168](https://img.qammunity.org/2021/formulas/mathematics/college/becnudkxcy6y4lnt3rz9bpt94ft3owhrcb.png)
The degrees of freedom are
![df=n-1=5-1=4](https://img.qammunity.org/2021/formulas/mathematics/college/iog86ra4gri1gbzhksjugsqdvhxdzfh6g0.png)
Then, the critical value of t for a 95% CI and 4 degrees of freedom is t=2.776.
The margin of error of the CI is:
![E=t\cdot s/√(n)=2.776\cdot 2.17/√(5)=6.024/2.236=2.694](https://img.qammunity.org/2021/formulas/mathematics/college/lq3249964f30ny3f8n0gmh64q937vvt4ie.png)
Then, the lower and upper bounds of the CI are:
![LL=50.800-2.694=48.106\\\\UL=50.800+2.694=53.494](https://img.qammunity.org/2021/formulas/mathematics/college/et4pste0ybzkdbwo2h93holwcslekedoez.png)
The 95% confidence interval for the measurements is [48.106, 53.494].