Answer:
Kc = 1.0844
Smax = 848.4352 MPa
Step-by-step explanation:
Given data:
d = diameter = 3 mm
D = outside diameter = 35 mm
N = coils = 16
Spring fully compressed
Question: What is the curvature correction factors, Kc = ? and the maximum shear, Smax = ?
First, Dm needs to be calculated:
Dm = D - d = 35 - 3 = 32 mm
The spring index:
![C=(D_(m) )/(d) =(32)/(3) =10.6667](https://img.qammunity.org/2021/formulas/engineering/college/hr4rmke4ho2f0rqjgcl5nknzx9a1wz2w86.png)
![K_(c) =(((4C-1)/(4C-4))+(0.615)/(C) )/(1+(0.5)/(C) ) =((4*10.6667-1)/(4*10.6667-4) +(0.615)/(10.6667) )/(1+(0.5)/(10.6667) ) =1.0844](https://img.qammunity.org/2021/formulas/engineering/college/y0ja2wdlvkz66p1we1rbk7ddb70fe44zpk.png)
Properties at a diameter of 3 mm:
Area = A = 2211 MPa mm^m
m = 0.145
The shear stress:
![S=(A)/(d^(m) ) =(2211)/(3^(0.145) ) =1885.4115MPa](https://img.qammunity.org/2021/formulas/engineering/college/2d3wm30ipprv2qd47lyoh5fnvtx69kaf4j.png)
According the distortion theory, the maximum shear:
![S_(max) =0.45S=0.45*1885.4115=848.4352MPa](https://img.qammunity.org/2021/formulas/engineering/college/dda0jlap76e8yokk3qwj742netww74jw72.png)