Answer:
the volume of the region bounded by the sphere
![V=(4573.35)/(4) \pi](https://img.qammunity.org/2021/formulas/mathematics/college/ap14vwbhgnp1drgs4e23emsbez1yy99tf2.png)
Explanation:
Let assume the region is A;
Given that; the region A is bounded by the sphere
and the hemisphere
![\rho = 14, z \geq 0](https://img.qammunity.org/2021/formulas/mathematics/college/q4o85n2zvh46ybpkchdixt6pi40cudyb7v.png)
The intersection of two curves is given by :
![28 cos \phi = 14 \\ \\ cos \phi = (1)/(2) \\ \\ \phi = (\pi)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/qe74fno0tfcy021k8mzraxncuyy7qr7o6v.png)
Using spherical coordinates to find the volume of the region bounded by the sphere; we have:
![\rho ^2 = x^2 +y^2 + z^2 \\ \\ x = \rho \ sin \ \phi \ cos \ \theta \\ \\ y = \rho \ sin \ \phi \ sin \ \theta \\ \\ z = \rho \ cos \ \phi](https://img.qammunity.org/2021/formulas/mathematics/college/5sh5uj8n4a4or5o9fopm2mer7lgkpf8kpj.png)
![dxdydz = \rho^2 sin \phi \ d \rho \ d\phi \ d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/a7h4zpsfv97q945wza81k0x25xlq1m0qik.png)
![V = \int\limits^(2\pi)_0 \int\limits^{(\pi)/(3)}_0 \int\limits^(14)_0 \ \rho^2 sin \phi d \rho d \phi d \theta + \int\limits^(2\pi)_0 \int\limits^{(\pi)/(2)}_{(\pi)/(3)} \int\limits^(28 cos \phi)_0 \ \rho^2 sin \phi d \rho d \phi d \theta](https://img.qammunity.org/2021/formulas/mathematics/college/3y886jctvn76hbcd7ybmtxqfn3k0x9dypf.png)
![V = \int\limits^(2\pi)_0 \int\limits^{(\pi)/(3)}_0 [(\rho^3)/(3)]^(14)__0}} \ sin \phi d \phi d \theta + \int\limits^(2\pi)_0 \int\limits^{(\pi)/(2)}_{(\pi)/(3)} [(\rho^3)/(3)]^(28 cos \phi)__0}} \ sin \phi d \phi d \theta](https://img.qammunity.org/2021/formulas/mathematics/college/7d8vb1exphsal7e5wloqg3nkouhfrsp4p2.png)
![V = 914.67 \ \int\limits^(2\pi)_0 \int\limits^{(\pi)/(3)}_0 \ sin \phi d \phi d \theta + 7317.33 \ \int\limits^(2\pi)_0 \int\limits^{(\pi)/(2)}_{(\pi)/(3)} cos^3 \phi} \ sin \phi d \phi d \theta](https://img.qammunity.org/2021/formulas/mathematics/college/2kqq7eqawp4xtiyljxh807yyg92i1rqp4w.png)
![V = 914.67[-cos \phi]^{(\pi)/(3)}}__0}}}[\theta]^(2\pi)__0}} + 7317.33[- (cos^4 \phi)/(4)]^{(\pi)/(2)}__{(\pi)/(3)}} [\theta]^(2 \pi)_o](https://img.qammunity.org/2021/formulas/mathematics/college/k0qn3vf1tqr0frkz3l8nw9238fyiljw3wb.png)
![V = 914.67[-(1)/(2)+1](2 \pi) + 7317.33[ (1)/(64)](2 \pi)](https://img.qammunity.org/2021/formulas/mathematics/college/e1bsp59k3wkr9dkd4hrg6utocq2b9cuzjm.png)
![V = 914.67 \pi + \frac {914.67 }{4} \pi](https://img.qammunity.org/2021/formulas/mathematics/college/ympigb16yx6nf4hvome31df32f41nrgca7.png)
![V =(3658.68+914.67)/(4) \pi](https://img.qammunity.org/2021/formulas/mathematics/college/638qb2j06b6oxuks5nihxdxyncmjftdbjc.png)
![V =(4573.35)/(4) \pi](https://img.qammunity.org/2021/formulas/mathematics/college/oh7ukf0wcgv888b5ltysdlam4jmh64xar6.png)