Answer:
3. The model for a substance of 400 mg with a half-life of 84 days is:
![y(t)=400e^(-0.00825\cdot t)](https://img.qammunity.org/2021/formulas/mathematics/college/44qdaahsd212zxpyu0xrthyz0omwptcysw.png)
4. 160 mg.
5. It will take 7 years for Ahmed's account to accumulate $500.
Explanation:
3. We can write a model for the substance with exponential decay as:
![y=Ce^(mt)](https://img.qammunity.org/2021/formulas/mathematics/college/73oxhviq34fwpnkyuihdjlui1by0et7qqz.png)
We know that at time t=0, the mass is 400 mg.
![y(0)=Ce^(m\cdot0)=C\cdot 1=400\\\\C=400](https://img.qammunity.org/2021/formulas/mathematics/college/nzyd7aow4lyiky6xoow63bsgw0rwy3vrn7.png)
We also know that the half-life is 84 days, so at t=84 days, the mass will be 400/2=200 mg.
![y(84)=400e^(m\cdot84)=200\\\\e^(84m)=200/400=0.5\\\\84m=ln(0.5)\\\\m=ln(0.5)/84=-0.00825](https://img.qammunity.org/2021/formulas/mathematics/college/u940bicmuxgezsm0i3d7q0h8zy0axr5wpu.png)
The model for a substance of 400 mg with a half-life of 84 days is:
![y(t)=400e^(-0.00825\cdot t)](https://img.qammunity.org/2021/formulas/mathematics/college/44qdaahsd212zxpyu0xrthyz0omwptcysw.png)
4. After 110 days the substance will have a mass of y=160 mg.
![y(110)=400e^(-0.00825\cdot 110)=400e^(-0.9)=400*0.4=160](https://img.qammunity.org/2021/formulas/mathematics/college/no83pslzu25y5hins4eqidsowfc0x60uiv.png)
5. The amount that Ahmed's will acumulate in function of the years (n) can be written as:
![C(n)=400\cdot(1+0.035)^n=400\cdot1.035^n](https://img.qammunity.org/2021/formulas/mathematics/college/oofi4933s0pqopukq81l6d93t0wlitq5j1.png)
We can calculate how many years it will take for the Amhed's account to acumulate $500 as:
![C(n)=500=400\cdot 1.035^n\\\\1.035^n=500/400=1.25\\\\n\cdot ln(1.035)=ln(1.25)\\\\n=ln(1.25)/ln(1.035)=0.223/0.034=6.49\approx7](https://img.qammunity.org/2021/formulas/mathematics/college/5e257wc6qrlpymsfvkd2ey9j3f5331bnbd.png)
It will take 7 years for Ahmed's account to accumulate $500.