215k views
20 votes
Please help me with this algebra question please u need help

Please help me with this algebra question please u need help-example-1

2 Answers

7 votes

Note:-

★theta to be used as A


\\ \rm\Rrightarrow sinA=(-2√(5))/(5)

Now

  • cosA=1-sin²A


\\ \rm\Rrightarrow cosA=\sqrt{1-(dfrac{-2√(5)}{5})^2}


\\ \rm\Rrightarrow cosA=\sqrt{1-(20)/(25)}


\\ \rm\Rrightarrow cosA=\sqrt{(25-20)/(25)}


\\ \rm\Rrightarrow cosA=(√(5))/(5)

Option C

User Marurban
by
3.1k points
3 votes

Given↷


\huge\rightarrow\sin( θ ) = ( - 2 √(5) )/(5)

To find↷

  • cos(θ) in IV quadrant

Answer↷


\huge\rightarrow\cos( θ ) = ( √(5) )/(5)

Solution↷

We know that,

sine is the ratio of adjacent side over the hypotenuse.


\rightarrow\sin( θ ) = ( - 2 √(5) )/(5) = (adjacent \: side)/(hypotenuse) \\

also,

cosine is the ratio of base over the hypotenuse.


\rightarrow\cos( θ ) = (?)/(5) \\

  • base = √(h²-a²)
  • h= hypotenuse
  • a= adjacent side


\rightarrow\cos( θ ) = \frac{ \sqrt{ {5}^(2) - ( - 2√( 5) {}^{} ) {}^(2) } }{5} \\


\rightarrow\cos( θ ) = \frac{ \sqrt{ {5}^(2) - {(2√( 5))}^(2) } }{5} \\


\rightarrow\cos( θ ) = ( √(25 - 20) )/(5) \\


\rightarrow\cos( θ ) = ( √(5) )/(5) \\

since ,cosine is always positive in the quadrant IV, option 3rd =√5/5 is correct ✓

User Davidkomer
by
3.1k points