Answer:
Cliff is 45 m tall.
Explanation:
Given:
Height of Sarah = 1.8 m
Angle of elevation = 60°
Angle of elevation 50 m back = 30°
As shown in the figure we have two right angled triangles SPQ and SPR.
Let the height of the cliff be
meters and
.
Using trigonometric ratios:
tan (Ф) = opposite/adjacent
In ΔSPQ. In ΔSPR.
⇒
...equation (i) ⇒
...equation (ii)
Dividing equation (i) and (ii)
⇒
![(tan(60))/(tan(30)) = (h_1)/(x) * (x+50)/(h_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5viruztzle13ghjq09onor9k6ij6h1iuoc.png)
⇒
![3 = (x+50)/(x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/me5a1yi21uti20i8gkkvw91833bw9lf8n2.png)
⇒
![3x=x+50](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l4yf0twic37f8cdsv0tavjejkb5zgvlzju.png)
⇒
![3x-x=50](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wb5id3ovoaam0t5vkpnmtky9yw3gli6f70.png)
⇒
![2x=50](https://img.qammunity.org/2021/formulas/mathematics/high-school/2370gnanktz2l4j2ba2flqassxxzvyl8ak.png)
⇒
⇒
meters
To find
plugging
in equation (i)
⇒
![h_1=x* tan(60)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xdqlaj27qjvmdqfs6nss9ndcfhbaxh3rw5.png)
⇒
![h_1=25* 1.73](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fnfbbpsuswal85vhgjqchzvi1zyvttrgyf.png)
⇒
meters
The height of the cliff from ground :
⇒
![h= h_1+h_s](https://img.qammunity.org/2021/formulas/mathematics/middle-school/c22ogkwczi5uxxfwne35fzzzvgnru5gkxz.png)
⇒
![h= 43.25+1.8](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1wvaoxmqf959b56p5y7ed0zpip3j5xa5md.png)
⇒
meters
The cliff is 45 m tall to the nearest meter.