Answer:
See below for answers and explanations
Explanation:
Problem 1
Convert point Q to polar coordinates (accounting for correct direction):
![\displaystyle r=√(x^2+y^2)=\sqrt{(-5)^2+(-5√(3))^2}=√(25+75)=√(100)=10\\\\\theta=\tan^(-1)\biggr((-5√(3))/(-5)\biggr)=\tan^(-1)\bigr(√(3)\bigr)=(4\pi)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/nxxvkp14zyjcgo3s3rmu2upk38yfohnn3q.png)
Thus, the answer is
, or A
Problem 2
Make polar substitutions:
![x^2+y^2-2x+8y=0\\\\r^2-2r\cos\theta+8r\sin\theta=0\\\\r^2=2r\cos\theta-8r\sin\theta\\\\r=2\cos\theta-8\sin\theta\\\\r=-8\sin\theta+2\cos\theta](https://img.qammunity.org/2023/formulas/mathematics/college/397eqd5qm1dkua8ocsuc5ebbsztd1paef4.png)
Hence, the answer is C
Problem 3
Eliminate the parameter:
![x=t+3\\x-3=t\\\\y=t^2+2t\\y=(x-3)^2+2(x-3)\\y=x^2-6x+9+2x-6\\y=x^2-4x+3](https://img.qammunity.org/2023/formulas/mathematics/college/dkfrsvqvhnoccrj0bxnt53pm4wm4ju5tx6.png)
Hence, the answer is C
Problem 4
Identify
and
and add the complex numbers:
![z_1+z_2=(-3+5i)+(-5-2i)=-3+5i-5-2i=-8+3i](https://img.qammunity.org/2023/formulas/mathematics/college/v4c8z8ue9t273cq2mwmqmqv90mz8cw18q8.png)
Thus, the correct answer is S
Problem 5
Use the formula for multiplying complex numbers in polar form:
![z_1z_2=r_1r_2(\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2))\\z_1z_2=(5)(15)(\cos(240^\circ+135^\circ)+i\sin(240^\circ+135^\circ))\\z_1z_2=75(\cos375^\circ+i\sin375^\circ)\\z_1z_2=75(\cos15^\circ+i\sin15^\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/lm6urlcsoliekmpo6wx77vueacxz1jh4hh.png)
Hence, the answer is A
Problem 6
Determine when the ball first hits the ground:
![y=-(1)/(2)gt^2+(v\sin\theta)t+y_0\\0=-(1)/(2)(32)t^2+(58\sin19^\circ)t+1.9\\0=-16t^2+(58\sin19^\circ)t+1.9\\t\approx1.273](https://img.qammunity.org/2023/formulas/mathematics/college/7xkemsdn7z93frbvs8cam17xrgo6uv8cvn.png)
Determine the horizontal distance covered by the ball:
![x=(v\cos\theta)t\\x=(58\cos19^\circ)(1.273)\\x\approx69.811](https://img.qammunity.org/2023/formulas/mathematics/college/3iocqpvnmfq2iqioqo6m4lyc69fqrci4o1.png)
Hence, the best answer is C
Problem 7
The equation is in the form of
where
is the length of each petal and the curve has a horizontal pole. If
is odd, then there are
petals, but if
is even, then there are
petals.
From our given equation, there are clearly 4 petals since
is even, and each petal length is 4 units. Hence, the first graph is correct.