103k views
1 vote
A particular project network has two paths through it: Path A and Path B. Path A has an expected completion time of 15 weeks and a variance in completion time of 8 weeks, while Path B has an expected completion time of 16 weeks and a variance in completion time of 4 weeks. What is the probability that this project is going to take more than 18 weeks?

User Victor
by
8.4k points

1 Answer

4 votes

Answer:

Probability that this project is going to take more than 18 weeks = 0.99991

Explanation:

When independent distributions are combined, the combined mean and combined variance are given through the relation

Combined mean = Σ λᵢμᵢ

(summing all of the distributions in the manner that they are combined)

Combined variance = Σ λᵢ²σᵢ²

(summing all of the distributions in the manner that they are combined)

For this distribution, the total time the project will take = A + B

A ~ (15, 8)

B ~ (16, 4)

Combined mean = μ₁ + μ₂ = 15 + 16 = 31

Combined variance = 1²σ₁² + 1²σ₂² = 8 + 4 = 12

Combined Standard Deviation = √(12) = 3.464 weeks

So, with the right assumption that this combined distribution is a normal distribution

Probability that this project is going to take more than 18 weeks

P(x > 18)

We first normalize/standardize 18

The standardized score for any value is the value minus the mean then divided by the standard deviation.

z = (x - μ)/σ = (18 - 31)/3.464 = - 3.75

The required probability

P(x > 18) = P(z > -3.75)

We'll use data from the normal probability table for these probabilities

P(x > 18) = P(z > -3.75) = 1 - P(x ≤ -3.75)

= 1 - 0.00009 = 0.99991

Hope this Helps!!!

User Dozer
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories