Given:
Given that the triangle ABC is similar to triangle FGH.
We need to determine the value of x.
Value of x:
Since, the triangles are similar, then their sides are proportional.
Thus, we have;
![(AC)/(FH)=(AB)/(GF)=(BC)/(GH)](https://img.qammunity.org/2021/formulas/mathematics/college/q2b258b7fhupp6eds2mgf7k5t9ycbs57gw.png)
Let us consider the proportion
to determine the value of x.
Substituting AB = 9 cm, GF = 13.5 cm, BC = 15 cm and GH = x, we get;
![(9)/(13.5)=(15)/(x)](https://img.qammunity.org/2021/formulas/mathematics/college/9h00o8vtubee9n0hx77juyn0alqw5pdsvo.png)
Cross multiplying, we get;
![9x=15 * 13.5](https://img.qammunity.org/2021/formulas/mathematics/college/us1ypm0d1gc6sew7yyc39ml0qlge9dunea.png)
![9x=202.5](https://img.qammunity.org/2021/formulas/mathematics/college/zgbuj2br25mnfnsg9dlyrgmcovie6xvm6x.png)
![x=22.5 \ cm](https://img.qammunity.org/2021/formulas/mathematics/college/ev8qdyvuj5f6vutki13ejkxjvv9l536zbd.png)
Thus, the value of x is 22.5 cm
Hence, Option F is the correct answer.