Answer:
hL = 0.9627 m
Step-by-step explanation:
Given
Q = 0.040 m³/s (constant value)
D₁ = 15 cm = 0.15 m ⇒ R₁ = D₁/2 = 0.15 m/2 = 0.075 m
D₂ = 8 cm = 0.08 m ⇒ R₂ = D₂/2 = 0.08 m/2 = 0.04 m
P₁ = 480 kPa = 480*10³Pa
P₂ = 440 kPa = 440*10³Pa
α = 1.05
ρ = 1000 Kg/m³
g = 9.81 m/s²
h₁ = h₂
hL = ? (the irreversible head loss in the reducer)
Using the formula Q = v*A ⇒ v = Q/A
we can find the velocities v₁ and v₂ as follows
v₁ = Q/A₁ = Q/(π*R₁²) = (0.040 m³/s)/(π*(0.075 m)²) = 2.2635 m/s
v₂ = Q/A₂ = Q/(π*R₂²) = (0.040 m³/s)/(π*(0.04 m)²) = 7.9577 m/s
Then we apply the Bernoulli law (for an incompressible flow)
(P₂/(ρ*g)) + (α*v₂²/(2*g)) + h₂ = (P₁/(ρ*g)) + (α*v₁²/(2*g)) + h₁ - hL
Since h₁ = h₂ we obtain
(P₂/(ρ*g)) + (α*v₂²/(2*g)) = (P₁/(ρ*g)) + (α*v₁²/(2*g)) - hL
⇒ hL = ((P₁-P₂)/(ρ*g)) + (α/(2*g))*(v₁²-v₂²)
⇒ hL = ((480*10³Pa-440*10³Pa)/(1000 Kg/m³*9.81 m/s²)) + (1.05/(2*9.81 m/s²))*((2.2635 m/s)²-(7.9577 m/s)²)
⇒ hL = 0.9627 m