Answer:
a) Binomial distribution, with n=20 and p=0.10.
b) P(x>1) = 0.6082
c) P(3≤X≤5) = 0.3118
d) E(X) = 2
e) σ=1.34
Explanation:
a) As we have a constant "defective" rate for each unit, and we take a random sample of fixed size, the appropiate distribution to model this variable X is the binomial distribution.
The parameters of the binomial distribution for X are n=20 and p=0.10.
![X\sim B(0.10,20)](https://img.qammunity.org/2021/formulas/mathematics/college/n34clco2p65slziaorrkjjque50n1z6w7l.png)
b) The probability of k defective surge protectors is calculated as:
![P(x=k) = \binom{n}{k} p^(k)q^(n-k)](https://img.qammunity.org/2021/formulas/mathematics/college/33xoa3jz4qcrs286j05tc4dkuwadwz758k.png)
In this case, we want to know the probability that more than one unit is defective: P(x>1). This can be calculated as:
![P(x>1)=1-(P(0)+P(1))\\\\\\P(x=0) = \binom{20}{0} p^(0)q^(20)=1*1*0.1216=0.1216\\\\P(x=1) = \binom{20}{1} p^(1)q^(19)=20*0.1*0.1351=0.2702\\\\\\ P(x>1)=1-(0.1216+0.2702)=1-0.3918=0.6082](https://img.qammunity.org/2021/formulas/mathematics/college/as7krlzu5vdscqx81thftx04exk9k0ha3r.png)
c) We have to calculate the probability that the number of defective surge protectors is between three and five: P(3≤X≤5).
![P(3\leq X\leq 5)=P(3)+P(4)+P(5)\\\\\\P(x=3) = \binom{20}{3} p^(3)q^(17)=1140*0.001*0.1668=0.1901\\\\P(x=4) = \binom{20}{4} p^(4)q^(16)=4845*0.0001*0.1853=0.0898\\\\P(x=5) = \binom{20}{5} p^(5)q^(15)=15504*0*0.2059=0.0319\\\\\\P(3\leq X\leq 5)=P(3)+P(4)+P(5)=0.1901+0.0898+0.0319=0.3118](https://img.qammunity.org/2021/formulas/mathematics/college/nsla33q1nqzcwpzpwvqfjud6ncqjf2wcdz.png)
d) The expected number of defective surge protectors can be calculated from the mean of the binomial distribution:
![E(X)=\mu_B=np=20*0.10=2](https://img.qammunity.org/2021/formulas/mathematics/college/9qo9w2pmlowg5bhf6nok2qakpcwstw3g52.png)
e) The standard deviation of this binomial distribution is:
![\sigma=√(np(1-p))=√(20*0.1*0.9)=√(1.8)=1.34](https://img.qammunity.org/2021/formulas/mathematics/college/zt7wbm9cvct4f78nnd5fdm31cw6gpjkm05.png)