196k views
2 votes
X= 1+ root 2. find (x-1/x)³
I m in grade 9​

2 Answers

4 votes

Answer:

2√2 / (5√2 + 7)

Explanation:

Given :

  • x = 1 + √2

Expanding

  • (x - 1 / x)³
  • (1 + √2 - 1)³ / (1 + √2)³
  • (√2)³ / (1 + √2)³
  • 2√2 / 1 + 2√2 + 3(1)(√2)(1 + √2)
  • 2√2 / 1 + 2√2 + 3√2 + 6
  • 2√2 / (5√2 + 7)
User Cedivad
by
4.6k points
4 votes

Answer:


-14√(2)+20

Explanation:


\textsf{Substituting}\quad x=1+\sqrt2\quad\textsf{into}\quad\left((x-1)/(x)\right)^3


\implies \left(((1+\sqrt2)-1)/((1+\sqrt2))\right)^3


\implies \left((\sqrt2)/(1+\sqrt2)\right)^3


\textsf{Apply exponent rule}:\left((a)/(b)\right)^n=(a^n)/(b^n)


\implies ((\sqrt2)^3)/((1+\sqrt2)^3)

Expand numerator:


(√(2) )^3=√(2)√(2)√(2)=2√(2)

Expand denominator:


\begin{aligned}(1+\sqrt2)^3 & = (1+\sqrt2)(1+\sqrt2)(1+\sqrt2)\\ & =(1+\sqrt2)(1+2√(2)+2)\\ & =1+2√(2)+2+√(2)+2√(2)√(2)+2√(2)\\ & = 7+5√(2)\end{aligned}


\implies ((\sqrt2)^3)/(7+5\sqrt2)

Substituting expanded numerator and denominator:


\implies (2√(2))/(7+5\sqrt2)


\textsf{Mulitply by conjugate :}\quad(7-5\sqrt2)/(7-5\sqrt2)


\implies (2√(2)(7-5\sqrt2))/((7+5\sqrt2)(7-5\sqrt2))


\implies (14√(2)-20)/(49-50)


\implies (14√(2)-20)/(-1)


\implies -14√(2)+20

User Rohit Goyani
by
4.2k points