196k views
2 votes
X= 1+ root 2. find (x-1/x)³
I m in grade 9​

2 Answers

4 votes

Answer:

2√2 / (5√2 + 7)

Explanation:

Given :

  • x = 1 + √2

Expanding

  • (x - 1 / x)³
  • (1 + √2 - 1)³ / (1 + √2)³
  • (√2)³ / (1 + √2)³
  • 2√2 / 1 + 2√2 + 3(1)(√2)(1 + √2)
  • 2√2 / 1 + 2√2 + 3√2 + 6
  • 2√2 / (5√2 + 7)
User Cedivad
by
8.6k points
4 votes

Answer:


-14√(2)+20

Explanation:


\textsf{Substituting}\quad x=1+\sqrt2\quad\textsf{into}\quad\left((x-1)/(x)\right)^3


\implies \left(((1+\sqrt2)-1)/((1+\sqrt2))\right)^3


\implies \left((\sqrt2)/(1+\sqrt2)\right)^3


\textsf{Apply exponent rule}:\left((a)/(b)\right)^n=(a^n)/(b^n)


\implies ((\sqrt2)^3)/((1+\sqrt2)^3)

Expand numerator:


(√(2) )^3=√(2)√(2)√(2)=2√(2)

Expand denominator:


\begin{aligned}(1+\sqrt2)^3 & = (1+\sqrt2)(1+\sqrt2)(1+\sqrt2)\\ & =(1+\sqrt2)(1+2√(2)+2)\\ & =1+2√(2)+2+√(2)+2√(2)√(2)+2√(2)\\ & = 7+5√(2)\end{aligned}


\implies ((\sqrt2)^3)/(7+5\sqrt2)

Substituting expanded numerator and denominator:


\implies (2√(2))/(7+5\sqrt2)


\textsf{Mulitply by conjugate :}\quad(7-5\sqrt2)/(7-5\sqrt2)


\implies (2√(2)(7-5\sqrt2))/((7+5\sqrt2)(7-5\sqrt2))


\implies (14√(2)-20)/(49-50)


\implies (14√(2)-20)/(-1)


\implies -14√(2)+20

User Rohit Goyani
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories