8.0k views
18 votes
Someone please help

The scale factor of a model of a warehouse to the actual warehouse is 1 to 9. The
volume of the actual warehouse is 5,770 ft3.

Find the volume of the model
warehouse

Round to a whole number.

User Nmurthy
by
8.4k points

2 Answers

9 votes

ans

8ft³

steps

1:729

729x=5770

x=5770/729

x=7.914952

x≈8

User Randy Cleary
by
9.0k points
4 votes

just a quick addition to the great reply by yoyotam526 above.


~\hspace{5em} \textit{ratio relations of two similar shapes} \\\\\begin{array}{ccccllll} &\stackrel{\stackrel{ratio}{of~the}}{Sides}&\stackrel{\stackrel{ratio}{of~the}}{Areas}&\stackrel{\stackrel{ratio}{of~the}}{Volumes}\\ \cline{2-4}&\\ \cfrac{\stackrel{similar}{shape}}{\stackrel{similar}{shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}~\hspace{6em} \cfrac{s}{s}=\cfrac{√(Area)}{√(Area)}=\cfrac{\sqrt[3]{Volume}}{\sqrt[3]{Volume}} \\\\[-0.35em] ~\dotfill


\stackrel{model}{1}~:~\stackrel{actual}{9}~~\implies \cfrac{\stackrel{model}{1}}{\underset{actual}{9}}=\cfrac{\sqrt[3]{\stackrel{model}{V}}}{\sqrt[3]{\stackrel{actual}{V}}}\implies \cfrac{1}{9}=\cfrac{\sqrt[3]{V}}{\sqrt[3]{5770}}\implies \cfrac{1}{9}=\sqrt[3]{\cfrac{V}{5770}} \\\\\\ \left( \cfrac{1}{9} \right)^3=\cfrac{V}{5770}\implies \cfrac{1}{9^3}=\cfrac{V}{5770}\implies \cfrac{1}{729}=\cfrac{V}{5770} \\\\\\ \cfrac{5770}{729}=V\implies 7.915~\approx~V\implies \stackrel{\textit{rounded up}}{8 \approx V}

User Icycandy
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories