Answer:
Step-by-step explanation:
Given the following information
Initial Pressure P1 = 400kPa
Initial temperature T1 = 40°C
Mass m= 2kg
T(ambient) Ta = 298k
From superheated Ammonia table, corresponding to P1 =400kPa and T1 = 40°C, we can find the first stage entropy and enthalpy
h1 = 1543.6 KJ/Kg
s1 = 5.7111 KJ/KgK
Using interpolation method to find the second stage enthalpy and entropy
From saturated ammonia table,
at P = 354.9KPa, the liquid specific entropy and enthalpy is.
sf = 0.6266 KJ/KgK
hf = 157.31 KJ/Kg
Also, From saturated ammonia table, at P' = 429.6KPa, the liquid specific entropy and enthalpy is.
sf' = 0.7114 KJ/KgK
hf' = 180.36 KJ/Kg
So, using interpolation, stage 2 specific enthalpy and entropy is
s2 = sf + (P1 - P) / (P' - P) × (sf' - sf)
s2 = 0.6266 + (400-354.9) / (429.6-354.9) × (0.7114-0.6266)
s2 = 0.6266 + (45.1 / 74.7) × 0.0848
s2 = 0.6266 + 0.0512
s2 = 0.6778 KJ/KgK
h2 = hf + (P1 - P) / (P' - P) × (hf' - hf)
h2 = 157.31 + (400-354.9) / (429.6-354.9) × (180.36-157.31)
h2 = 157.31 + (45.1 / 74.7) × 23.05
h2 = 157.31 + 13.916
h2 = 171.23 KJ/Kg
At superheated ammonia table corresponding to P3 = 400Kpa, we can find the final stage specific entropy and enthalpy
s3 = 5.3559 KJ/KgK
h3 = 1440.2 KJ/Kg
Using equation of continuity
m1 + m2 = m3
We can now calculate the stage two mass
m1•h1 + m2•h2 = (m1+m2)•h3
Make m2 subject of the formula
m2•h2 - m2•h3 = m1•h3 - m1•h1
m2(h2 - h3) = m1 ( h3 - h1)
m2 = m1•(h3 - h1) / (h2 - h3)
m2 = 2 × (1440.2 - 1543.6) / (171.23 - 1440.2)
m2 = 2 × -103.4 / -1268.97
m2 = 0.163 kg
Then, the final mass is equal to
m3 = m1 + m2
m3 = 2 + 0.163
m3 = 2.163 kg
Calculating the irreversible process
I = Ta(m3•s3 - m2•s2 - m1•s1)
I = 298( 2.163 × 5.3559 - 0.163 × 0.6778 - 2 × 5.7111
I = 298(11.5848 - 0.1105 - 11.4222)
I = 298 × 0.0521
I = 15.5258 KJ
I ≈ 15.53 KJ