66.2k views
5 votes
The ​half-life of a radioactive element is 130​ days, but your sample will not be useful to you after​ 80% of the radioactive nuclei originally present have disintegrated. About how many days can you use the​ sample? Round to the nearest day.

1 Answer

2 votes

Answer:

We can use the sample about 42 days.

Explanation:

Decay Equation:


(dN)/(dt)\propto -N


\Rightarrow (dN)/(dt) =-\lambda N


\Rightarrow (dN)/(N) =-\lambda dt

Integrating both sides


\int (dN)/(N) =\int\lambda dt


\Rightarrow ln|N|=-\lambda t+c

When t=0, N=
N_0 = initial amount


\Rightarrow ln|N_0|=-\lambda .0+c


\Rightarrow c= ln|N_0|


\therefore ln|N|=-\lambda t+ln|N_0|


\Rightarrow ln|N|-ln|N_0|=-\lambda t


\Rightarrow ln|(N)/(N_0)|=-\lambda t.......(1)


(N)/(N_0)=e^(-\lambda t).........(2)

Logarithm:


  • ln|\frac mn|= ln|m|-ln|n|

  • ln|ab|=ln|a|+ln|b|

  • ln|e^a|=a

  • ln|a|=b \Rightarrow a=e^b

  • ln|1|=0

130 days is the half-life of the given radioactive element.

For half life,


N=\frac12 N_0,
t=t_\frac12=130 days.

we plug all values in equation (1)


ln|(\frac12N_0)/(N_0)|=-\lambda * 130


\rightarrow ln|(\frac12)/(1)|=-\lambda * 130


\rightarrow ln|1|-ln|2|-ln|1|=-\lambda * 130


\rightarrow -ln|2|=-\lambda * 130


\rightarrow \lambda= (-ln|2|)/(-130)


\rightarrow \lambda= (ln|2|)/(130)

We need to find the time when the sample remains 80% of its original.


N=(80)/(100)N_0


\therefore ln|{\frac{\frac {80}{100}N_0}{N_0}|=-(ln2)/(130)t


\Rightarrow ln|{{\frac {80}{100}|=-(ln2)/(130)t


\Rightarrow ln|{{ {80}|-ln|{100}|=-(ln2)/(130)t


\Rightarrow t=(ln|80|-ln|100|)/(-(ln|2|)/(130))


\Rightarrow t=\frac)* 130{-2}


\Rightarrow t\approx 42

We can use the sample about 42 days.

User Patrick Hallisey
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.