66.2k views
5 votes
The ​half-life of a radioactive element is 130​ days, but your sample will not be useful to you after​ 80% of the radioactive nuclei originally present have disintegrated. About how many days can you use the​ sample? Round to the nearest day.

1 Answer

2 votes

Answer:

We can use the sample about 42 days.

Explanation:

Decay Equation:


(dN)/(dt)\propto -N


\Rightarrow (dN)/(dt) =-\lambda N


\Rightarrow (dN)/(N) =-\lambda dt

Integrating both sides


\int (dN)/(N) =\int\lambda dt


\Rightarrow ln|N|=-\lambda t+c

When t=0, N=
N_0 = initial amount


\Rightarrow ln|N_0|=-\lambda .0+c


\Rightarrow c= ln|N_0|


\therefore ln|N|=-\lambda t+ln|N_0|


\Rightarrow ln|N|-ln|N_0|=-\lambda t


\Rightarrow ln|(N)/(N_0)|=-\lambda t.......(1)


(N)/(N_0)=e^(-\lambda t).........(2)

Logarithm:


  • ln|\frac mn|= ln|m|-ln|n|

  • ln|ab|=ln|a|+ln|b|

  • ln|e^a|=a

  • ln|a|=b \Rightarrow a=e^b

  • ln|1|=0

130 days is the half-life of the given radioactive element.

For half life,


N=\frac12 N_0,
t=t_\frac12=130 days.

we plug all values in equation (1)


ln|(\frac12N_0)/(N_0)|=-\lambda * 130


\rightarrow ln|(\frac12)/(1)|=-\lambda * 130


\rightarrow ln|1|-ln|2|-ln|1|=-\lambda * 130


\rightarrow -ln|2|=-\lambda * 130


\rightarrow \lambda= (-ln|2|)/(-130)


\rightarrow \lambda= (ln|2|)/(130)

We need to find the time when the sample remains 80% of its original.


N=(80)/(100)N_0


\therefore ln|{\frac{\frac {80}{100}N_0}{N_0}|=-(ln2)/(130)t


\Rightarrow ln|{{\frac {80}{100}|=-(ln2)/(130)t


\Rightarrow ln|{{ {80}|-ln|{100}|=-(ln2)/(130)t


\Rightarrow t=(ln|80|-ln|100|)/(-(ln|2|)/(130))


\Rightarrow t=\frac)* 130{-2}


\Rightarrow t\approx 42

We can use the sample about 42 days.

User Patrick Hallisey
by
4.1k points