Answer:
P( That it will take over 10 years or more of a year with a rainfall above 50inches) = (0.9938)^10
Explanation:
Since the annual rainfall is normally distributed,
Given: that
Mean (µ )= 40
and σ = 4.
Let X be normal random variables of the annual rainfall.
P(that there will be over 10 years or more before a year with a rainfall above 50 inches)
P(>50) = 1-P[X ≤50]
1 - P[X- μ/σ ≤ 50 - 40/4]
=1 - P [Z≤ 5/2]
=1 -Φ(5/2)
=1 - 0.9939
= 0.0062
P( the non occurrence of rainfall above 50 inches)
= 1-0.0062
=0.9938
ASSUMPTION:
P( That it will take over 10 years or more of a year with a rainfall above 50inches) =