Answer:
The predicted diastolic blood pressure of people with 113 mm Hg systolic blood pressure is 74 mm Hg.
Explanation:
The general form of a regression equation is:
![y=\alpha +\beta x](https://img.qammunity.org/2021/formulas/mathematics/college/t0u9c1lj2t6x50u2xbkimvcaeqn51mzgk8.png)
Here,
y = dependent variable
x = independent variable
α = intercept
β = slope
The formula to compute the slope and intercept are:
![\begin{aligned} \alpha &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} \\\\\beta &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} \end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/college/5u7s9fmqhy2utp1lk0ekyqqrraas0kpa14.png)
The value of
as compute in the table attached below.
Compute the value of α and β as follows:
![\begin{aligned} \alpha &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = ( 690 \cdot 134965 - 1035 \cdot 90064)/( 8 \cdot 134965 - 1035^2) \approx -10.64 \\ \\\beta &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = ( 8 \cdot 90064 - 1035 \cdot 690 )/( 8 \cdot 134965 - \left( 1035 \right)^2) \approx 0.749\end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/college/gaabx3weanjjgb6ozf7xld96tdd9zn5i6e.png)
Thus, the regression equation of diastolic blood pressure based on systolic blood pressure is:
![y=-10.64+0.749x](https://img.qammunity.org/2021/formulas/mathematics/college/i3ae0puah19t1gwmjrec0772gq2c24ztnp.png)
Compute the value of y for x = 113 as follows:
![y=-10.64+0.749x](https://img.qammunity.org/2021/formulas/mathematics/college/i3ae0puah19t1gwmjrec0772gq2c24ztnp.png)
![=-10.64+0.749* 113\\=-10.64+84.637\\=73.997\\\approx 74](https://img.qammunity.org/2021/formulas/mathematics/college/w4m5zngm0ktytfzyu0s33ydcdtai8bbqil.png)
Thus, the predicted diastolic blood pressure of people with 113 mm Hg systolic blood pressure is 74 mm Hg.