Answer:
t = 2.175 s (3 dp)
t = 0.575 s (3 dp)
Explanation:
Given equation:
![h=3+44t-16t^2](https://img.qammunity.org/2023/formulas/mathematics/college/7zqwfgao077sowxy4s4u9co50ojzepu9a6.png)
To find all values of t for which the ball's height is 23 ft, substitute h = 20 into the equation and solve for t:
![\implies h=23](https://img.qammunity.org/2023/formulas/mathematics/college/wqgaigfs5asc1v6g1ed42yvsj3a7dzpwl1.png)
![\implies 3+44t-16t^2=23](https://img.qammunity.org/2023/formulas/mathematics/college/58199i44tp2qfavcvgyemd6wl2oacndvfq.png)
![\implies 16t^2-44t-3+23=0](https://img.qammunity.org/2023/formulas/mathematics/college/u0ltst6r44s4f5gqfi35y88jk4f9lm0ilu.png)
![\implies 16t^2-44t+20=0](https://img.qammunity.org/2023/formulas/mathematics/college/715qou0u052dtbwaigldjkqseq5sl818j9.png)
Factor out common term 4:
![\implies 4(4t^2-11t+5)=0](https://img.qammunity.org/2023/formulas/mathematics/college/3uuted7up1nq6n2ozjijt0yll3fnfhrewv.png)
Divide both sides by 4:
![\implies 4t^2-11t+5=0](https://img.qammunity.org/2023/formulas/mathematics/college/i8aj5723qjejhw4gki0v3k6dqmgtwcu963.png)
Quadratic formula
![x=(-b \pm √(b^2-4ac) )/(2a)\quad\textsf{when}\:ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/y55l7v1y4waybbqvew3ea4eoity9iv8y2l.png)
Use the quadratic formula to solve for t:
![\implies t=(-(-11) \pm √((-11)^2-4(4)(5)) )/(2(4))](https://img.qammunity.org/2023/formulas/mathematics/college/vljtmxn4g23f4eow9mqwu5xvmr34obx482.png)
![\implies t=(11 \pm √(41))/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/6nz22chcmm2049kvbyqpmlzzoy1qoblqh0.png)
Therefore,
- t = 2.175 s (3 dp)
- t = 0.575 s (3 dp)