30.4k views
3 votes
he electronics supply company where you work has two different resistors, R1 and R2, in its inventory, and you must measure the values of their resistances. Unfortunately, stock is low, and all you have are R1 and R2 in parallel and in series - and you can't separate these two resistor combinations. You separately connect each resistor network to a battery with emf 57.0 V and negligible internal resistance and measure the power P supplied by the battery in both cases. For the series combination, P = 48.0 W; for the parallel combination, P = 256 W. You are told that R1>R2. Calculate R1.

1 Answer

2 votes

Answer:

R₁ = 50.77 Ω

Step-by-step explanation:

Since, we know that:

Electric Power = P = VI

but from Ohm's Law:

V = IR

(or) I = V/R

Therefore,

P = V²/R

(OR) R = V²/P

where,

V = Battery Voltage

R = Resistance of combination

FOR SERIES COMBINATION:

R = Rs = (57 V)²/48 W

Rs = 67.69 Ω

but, we know that:

Rs = R₁ + R₂

R₁ + R₂ = 67.69 Ω

R₁ = 67.69 Ω - R₂ __________ eqn (1)

FOR PARALLEL COMBINATION:

R = Rp = (57 V)²/256 W

Rp = 12.69 Ω

but, we know that:

Rp = (R₁R₂)/(R₁ + R₂) = 12.69 Ω

using eqn (1) and value of R₁ + R₂, we get

Rp = 12.69 = R₂(67.69 - R₂)/67.69

859.08 = 67.69 R₂ - R₂²

R₂² - 67.69 R₂ + 859.08 = 0

Solving this quadratic equation we get the answers:

Either, R₂ = 50.76 Ω

Either, R₂ = 16.92 Ω

Since, it is stated in the question that R₁ > R₂. Therefore, we choose the second value. So,

R₂ = 16.92 Ω

using this value in eqn (1), we get:

R₁ = 67.69 Ω - 16.92 Ω

R₁ = 50.77 Ω

User Floating Cat
by
5.6k points