Answer:
Electric generators develop an electric potential via magnetic induction. Moving a conducting rod through a magnetic field that exists between the poles of a horseshoe magnet causes an electric potential to be set up in the rod. Free electrons move through this rod from one end to the other for as long as movement of the rod is maintained. The direction of this movement depends on whether the rod is moved across the lines of force in the magnetic field in either the opposite direction or the same direction. Generators usually consist of multiple conductors mounted on a cylinder that rotates in a magnetic field.
Thermocouples utilize heat to develop an electric potential. Two strips of different metals are connected at one end to form a junction and the other ends are kept apart. A heat source is applied to the junction; this causes each metal strip’s temperature to rise at the junction. The free ends aren’t as hot and electric charges are produced at these free ends. Because the strips consist of different materials, there's a difference of potential between these free ends; when connected by a conducting wire, the electrons can move through the pathway. The voltage that's produced will become greater as the difference in temperature between the free ends and the junction increases.