Answer:
![a=2√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/erxz2ys5hm14clx7pi9gt5ap9k96fvb9m2.png)
Explanation:
Side a is the side opposite angle A.
Side b is the side opposite angle B.
Side c is the side opposite angle C.
We have been given the lengths of 2 sides and the included angle.
Therefore, to find side a use the cosine rule.
Cosine rule
![a^2=b^2+c^2-2bc \cos A](https://img.qammunity.org/2023/formulas/mathematics/college/ohleyp34fuaz5sa9rn8k203jmwxr1t6p2q.png)
where:
- a, b and c are the sides
- A is the angle opposite side a
From inspection of the triangle:
- side b = 2
- side c = 4
- angle A = 60°
Substitute the given values into the formula and solve for a:
![\implies a^2=b^2+c^2-2bc \cos A](https://img.qammunity.org/2023/formulas/mathematics/college/bhu0wydjrmpudr1as9r160o60u2kdq5g9b.png)
![\implies a^2=2^2+4^2-2(2)(4) \cos 60^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/9vuiu19osp75nlaro1wxlycjoivrnz0eb1.png)
![\implies a^2=4+16-16\left((1)/(2)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/g0t6i99k44wgc4algwnkf5vhd8t89sfexz.png)
![\implies a^2=4+16-8](https://img.qammunity.org/2023/formulas/mathematics/college/bxvcohm6gagsbgkr689wf8n4ckvx852lee.png)
![\implies a^2=12](https://img.qammunity.org/2023/formulas/mathematics/college/v1ibfhj53quklac8s5v8p8g6tojl084pn8.png)
![\implies a=√(12)](https://img.qammunity.org/2023/formulas/mathematics/college/wqbxwigb40jhl1lxhto2xjifnlo7h1itr9.png)
![\implies a=√(4 \cdot 3)](https://img.qammunity.org/2023/formulas/mathematics/college/83snudo85i74hga9uqzzc1y612nn0qt898.png)
![\implies a=√(4)√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/z907eelsg2pu7fj8f9no6onjoz5qhrlasm.png)
![\implies a=2√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/qic5xwshv4q0d1jnj58xlmoenmzxl2zp4j.png)
Therefore, the exact length of side a is 2√3.