Answer: c) 90 m/s
Step-by-step explanation:
Given
Invest velocity, v1 = 250 m/s
Inlet specific enthalpy, h1 = 270.11 kJ/kg = 270110 J/kg
Outlet specific enthalpy, h2 = 297.31 kJ/kg = 297310 J/kg
Outlet velocity, v2 = ?
0 = Q(cv) - W(cv) + m[(h1 - h2) + 1/2(v1² - v2²) + g(z1 - z2)]
0 = Q(cv) + m[(h1 - h2) + 1/2(v1² - v2²)]
0 = [(h1 - h2) + 1/2(v1² - v2²)]
Substituting the values of the above, we get
0 = [(270110 - 297310) + 1/2 ( 250² - v²)
0 = [-27200 + 1/2 (62500 - v²)]
27200 = 1/2 (62500 - v²)
54400 = 62500 - v²
v² = 62500 - 54400
v² = 8100
v = √8100
v = 90 m/s