Answer:
![\hat p \sim N (p ,\sqrt{(p*(1-p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/6mfl86c2icb48bliesipz6hcjqgtcuuezl.png)
The estimated standard error is given by:
![SE= \sqrt{(0.62*(1-0.62))/(150)}=0.040](https://img.qammunity.org/2021/formulas/mathematics/college/iyxgp6hqe5di0k8aavqkiuag84xb8ziofu.png)
Explanation:
For this case we have the following data:
n =150 represent the sample size selected
x = 93 people stated that they always wear their seatbelt when they travel in a car
For this case the the proportion estimated is :
![\hat p = (93)/(150)= 0.62](https://img.qammunity.org/2021/formulas/mathematics/college/4wq22jwp9g3fbrq9mbtqulw1qzio5iolpz.png)
We can can check if we can use the normal approximation :
![np =150*0.62= 93>10](https://img.qammunity.org/2021/formulas/mathematics/college/fjp4ia0i6p9gprjxotkubbyyuuxiv85spx.png)
![n(1-p) = 150*(1-0.62)= 57>10](https://img.qammunity.org/2021/formulas/mathematics/college/7yli15418i42zj4c48t2vgnttzsec3axi2.png)
So then we can use the normal approximation and the distribution for the proportion is given:
![\hat p \sim N (p ,\sqrt{(p*(1-p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/6mfl86c2icb48bliesipz6hcjqgtcuuezl.png)
The estimated standard error is given by:
![SE= \sqrt{(0.62*(1-0.62))/(150)}=0.040](https://img.qammunity.org/2021/formulas/mathematics/college/iyxgp6hqe5di0k8aavqkiuag84xb8ziofu.png)