116k views
2 votes
A welding rod with κ = 30 (Btu/hr)/(ft ⋅ °F) is 20 cm long and has a diameter of 4 mm. The two ends of the rod are held at 500 °C and 50 °C. (a) In the units of Btu and J, how much heat flows along the rod each second? (b) What is the temperature of the welding rod at its midpoint?

User Stralos
by
3.2k points

1 Answer

1 vote

Answer:

In Btu:

Q=0.001390 Btu.

In Joule:

Q=1.467 J

Part B:

Temperature at midpoint=274.866 C

Step-by-step explanation:

Thermal Conductivity=k=30 (Btu/hr)/(ft ⋅ °F)=
(30)/(3600) (Btu/s)/(ft.F)=8.33*10^(-3) (Btu/s)/(ft.F)

Thermal Conductivity is SI units:


k=30(Btu/hr)/(ft.F) * (1055.06)/(3600*0.3048*0.556) \\k=51.88 W/m.K

Length=20 cm=0.2 m= (20*0.0328) ft=0.656 ft

Radius=4/2=2 mm =0.002 m=(0.002*3.28)ft=0.00656 ft

T_1=500 C=932 F

T_2=50 C= 122 F

Part A:

In Joules (J)


A=\pi *r^2\\A=\pi *(0.002)^2\\A=0.00001256 m^2

Heat Q is:


Q=(k*A*(T_1-T_2))/(L) \\Q=(51.88*0.000012566*(500-50)/(0.2)\\ Q=1.467 J

In Btu:


A=\pi *r^2\\A=\pi *(0.00656)^2\\A=0.00013519 m^2

Heat Q is:


Q=(k*A*(T_1-T_2))/(L) \\Q=(8.33*10^(-3)*0.00013519*(932-122)/(0.656)\\ Q=0.001390 Btu

PArt B:

At midpoint Length=L/2=0.1 m


Q=(k*A*(T_1-T_2))/(L)

On rearranging:


T_2=T_1-(Q*L)/(KA)


T_2=500-(1.467*0.1)/(51.88*0.00001256) \\T_2=274.866\ C

User Daxmacrog
by
3.5k points