Answer:
b) field is zero, c) the magnetic field does not change in intensity or direction
e) M = -H = Bo /μ₀ , g) M = 0
Step-by-step explanation:
Part b
superconductors are formed by so-called Coper pairs that are electrons linked through a distortion in the network, this creates that they must be treated as an entity so we have an even number of charge carriers and the material must behave with diamagnetic , Meissner effect, consequently the magnetic field inside its superconductor is zero
the correct answer is Zero
Part c
outside the superconducting cylinder the magnetic field does not change in intensity or direction
Part E
Magnetization is defined by the equation
B = μ₀ (H + M)
with field B it is zero inside the superconductors
M = -H = Bo /μ₀
where Bo is the magnetic induction in the normal state
Part g
As outside the cylinder there is no material zero magnetization
M = 0