Answer:
The answer is: It loses 0.23 J
Step-by-step explanation:
When the collision is elastic, both, momentum and kinetic energy is conserved, thus, the velocity is equal:
![v_(1) =((m_(1)-m_(2))/(m_(1)+m_(2) ) )u_(1)+(2m_(2)u_(2))/(m_(1)+m_(2))](https://img.qammunity.org/2021/formulas/physics/college/u8udbpbgwwfjlf5n6ixmpplzdyjb7tw625.png)
Where
m₁ = 620 g = 0.62 kg
m₂ = 320 g = 0.32 kg
u₁ = 2.1 m/s
u₂ = -3.8 m/s
Replacing:
![v_(1) =((0.62-0.32)/(0.62+0.32) )*2.1+(2*0.32*(-3.8))/(0.62+0.32) =-1.917m/s](https://img.qammunity.org/2021/formulas/physics/college/hhs2mietqbf24aiu8yq3v055a2mgn89ph9.png)
The change of kinetic energy is:
![E_(k) =(1)/(2) m*delta-v^(2) =(1)/(2) *0.62*((-1.917)^(2)-(2.1)^(2) )=-0.228=-0.23J](https://img.qammunity.org/2021/formulas/physics/college/hvhqm5jwd46pzoxzv92a4ofltnakov93uh.png)
The negative sign indicates a loss of energy