Answer:
A) θ = 36.27°
B) T = 0.4327N
Step-by-step explanation:
A) If we imagine the free body diagram of this problem , and taking moments about the x-axis and equate to zero, we have;
ΣFx = F_el - T_x = 0
Now, From coulombs law, we know that F = k•q1•q2/r²
Thus, applying to this question, we have;
F_el - T_x gives
(k•q_bob•q_free)/d² - T_x = 0
Now, due to the angle θ, T_x when resolved, is T•sinθ
Thus, we have;
(k•q_bob•q_free)/d² - T•sinθ = 0
And so;
(k•q_bob•q_free)/d² = T•sinθ - - - (eq1)
Now, resolving about the y-axis and equating to zero gives;
ΣFy = T_y - m_bob•g = 0
When T_y is resolved, it gives T•cosθ
Thus;
T•cosθ - m_bob•g = 0
T•cosθ = m_bob•g
T = m_bob•g/cosθ - - - - (eq2)
Let's put m_bob•g/ cosθ for T in eq 1 to get;
(k•q_bob•q_free)/d² = (m_bob•g/ cosθ)•sinθ
This gives;
(k•q_bob•q_free)/d² =m_bob•g tanθ
Making tanθ the subject ;
tanθ = (k•q_bob•q_free)/(d².m_bob•g)
We are given;
q_bob = +0.600 µC = 0.6 x 10^(9)C
q_free = −0.900 µC = −0.9 x 10^(9)C (we will use positive in calculation as the negative sign shows that electric field points radially towards the charge.)
m_bob = 3.6 x 10^(-2) kg
d = 0.15m
k is coulombs constant with a standard value of 8.99 x 10^(9) N.m²/C²
Plugging in relevant values ;
tanθ = (8.99 x 10^(9)•0.6 x 10^(9)•0.9 x 10^(9))/(0.15²•3.6 x 10^(-2)•9.8)
tanθ = 0.7339
θ = tan^(-1)0.7339
θ = 36.27°
B) Let's put 36.27° for θ in eq 2.
Thus;
T = (3.6 x 10^(-2)•9.8)/(cos 36.27)
T = 0.4327N