We will apply the concepts of energy conservation to solve the problem. We know that gravitational potential energy is equivalent to the sum of translational kinetic energy and rotational kinetic energy. Additionally, the relation of the angular velocity with the tangential velocity will be determined to eliminate the angular term and obtain the expression of the Inertia in terms of the data given, therefore, we know that
The angular velocity in terms of tangential velocity and radius is defined as,
Replacing,
Multiplying by R^2,
Replacing with our values we have,