45.2k views
4 votes
Simplify the expression: sin (2x) cos (5x) − sin (5x) cos (2x).

a. cos(-3x)
b. cos(7x)
c. sin(-3x)
d. sin(7x)

1 Answer

3 votes

Given:

The given expression is
sin (2x) \ cos (5x) - sin (5x) \ cos (2x)

We need to determine the simplified value of the given expression.

Simplification:

Since, the given expression is in the form of
sin a \ cos b-\cos a \ sin b, the given expression can be simplified using the identity
\sin (a-b)=\sin a \cos b-\cos a \sin b

Comparing the given expression with the identity, we get;


a=2x and
b=5x

Using this in the identity, we get;


sin (2x) \ cos (5x) - sin (5x) \ cos (2x)=sin(2x-5x)

Simplifying, we get;


sin (2x) \ cos (5x) - sin (5x) \ cos (2x)=sin(-3x)

Thus, the simplified value of the given expression is
sin (-3x)

Hence, Option c is the correct answer.

User Davidnr
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories