45.2k views
4 votes
Simplify the expression: sin (2x) cos (5x) − sin (5x) cos (2x).

a. cos(-3x)
b. cos(7x)
c. sin(-3x)
d. sin(7x)

1 Answer

3 votes

Given:

The given expression is
sin (2x) \ cos (5x) - sin (5x) \ cos (2x)

We need to determine the simplified value of the given expression.

Simplification:

Since, the given expression is in the form of
sin a \ cos b-\cos a \ sin b, the given expression can be simplified using the identity
\sin (a-b)=\sin a \cos b-\cos a \sin b

Comparing the given expression with the identity, we get;


a=2x and
b=5x

Using this in the identity, we get;


sin (2x) \ cos (5x) - sin (5x) \ cos (2x)=sin(2x-5x)

Simplifying, we get;


sin (2x) \ cos (5x) - sin (5x) \ cos (2x)=sin(-3x)

Thus, the simplified value of the given expression is
sin (-3x)

Hence, Option c is the correct answer.

User Davidnr
by
3.6k points