115k views
0 votes
Part 2: Use the information provided to write the standard form equation of each circle

4. Center: (8, -4), Radius:
√(118)


5. Center: (-10, 9), Radius:
√(37)


6. Center: (-8, 0), Radius: 6

User Adam Bak
by
5.3k points

2 Answers

4 votes

Answer:

4. (x - 8)² + (y + 4)² = 118

5. (x + 10)² + (y - 9)² = 37

6. (x + 8)² + y² = 36

Explanation:

Equation of a circle:

(x - h)² + (y - k)² = r²

4. Center: (8, -4), Radius: sqrt{118}

(x - 8)² + (y - (-4))² = (sqrt(118))²

(x - 8)² + (y + 4)² = 118

5. Center: (-10, 9), Radius: sqrt{37}

(x - (-10))² + (y - 9)² = (sqrt(37))²

(x + 10)² + (y - 9)² = 37

6. Center: (-8, 0), Radius: 6

(x - (-8))² + (y - 0)² = 6²

(x + 8)² + y² = 36

User Thiago Chaves
by
6.0k points
3 votes

Answer:

The answer to your question is below

Explanation:

- The Standard form of the equation is

(x - h)² + (y - k)² = r²

4.

Center (8, -4) r =
√(118)

-Substitution

(x - 8)² + (y + 4)² =
√(118)²

-Result

(x - 8)² + (y + 4)² = 118

5.

Center (-10, 9) r =
√(37)

-Substitution

(x + 10)² + (y - 9)² =
√(37)²

-Result

(x + 10)² + (y - 9)² = 37

6.-

Center (-8, 0) r = 6

-Substitution

(x + 8)² + (y - 0)² = (6)²

-Result

(x + 8)² + (y - 0)² = 36

User PorridgeBear
by
5.4k points