115k views
0 votes
Part 2: Use the information provided to write the standard form equation of each circle

4. Center: (8, -4), Radius:
√(118)


5. Center: (-10, 9), Radius:
√(37)


6. Center: (-8, 0), Radius: 6

User Adam Bak
by
8.1k points

2 Answers

4 votes

Answer:

4. (x - 8)² + (y + 4)² = 118

5. (x + 10)² + (y - 9)² = 37

6. (x + 8)² + y² = 36

Explanation:

Equation of a circle:

(x - h)² + (y - k)² = r²

4. Center: (8, -4), Radius: sqrt{118}

(x - 8)² + (y - (-4))² = (sqrt(118))²

(x - 8)² + (y + 4)² = 118

5. Center: (-10, 9), Radius: sqrt{37}

(x - (-10))² + (y - 9)² = (sqrt(37))²

(x + 10)² + (y - 9)² = 37

6. Center: (-8, 0), Radius: 6

(x - (-8))² + (y - 0)² = 6²

(x + 8)² + y² = 36

User Thiago Chaves
by
8.3k points
3 votes

Answer:

The answer to your question is below

Explanation:

- The Standard form of the equation is

(x - h)² + (y - k)² = r²

4.

Center (8, -4) r =
√(118)

-Substitution

(x - 8)² + (y + 4)² =
√(118)²

-Result

(x - 8)² + (y + 4)² = 118

5.

Center (-10, 9) r =
√(37)

-Substitution

(x + 10)² + (y - 9)² =
√(37)²

-Result

(x + 10)² + (y - 9)² = 37

6.-

Center (-8, 0) r = 6

-Substitution

(x + 8)² + (y - 0)² = (6)²

-Result

(x + 8)² + (y - 0)² = 36

User PorridgeBear
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories