212k views
25 votes
Find all solutions in the interval [0,2pi).
2sin^2(x)=sin(x)

2 Answers

13 votes


2\sin^2 x =\sin x \\\\\implies 2 \sin^2 x - \sin x=0\\\\\implies \sin x(2 \sin x -1) =0\\\\\implies \sin x = 0~~\text{or}~~ 2 \sin x -1 =0\\\\\implies \sin x = 0~~ \text{or}~ ~ \sin x = \frac 12\\\\\text{For}~~ \sin x = 0\\\\x=n\pi \\\\\text{In the interval,}~~[0, 2\pi)\\\\x=0, \pi\\\\\text{For}~~ \sin x = \frac 12\\\\x=n\pi+(-1)^n \frac{\pi}6 \\\\\text{In the interval,}~~[0, 2\pi)\\\\x=\frac{\pi}6,~ \frac{5\pi}6\\\\\text{Hence,}~ x = 0,~\pi,~ \frac{\pi}6, ~\frac{5 \pi}6

User Shark Deng
by
8.8k points
2 votes

Answer:


x=0, (\pi)/(6),(5\pi)/(6),\pi \:\sf(for\:the\:given\:interval)

Explanation:

given interval [0, 2π) = 0 ≤ x < 2π


2\sin^2(x)=\sin(x)

subtract sin(x) from both sides:


\implies 2\sin^2(x)-\sin(x)=0

factor:


\implies \sin(x)[2\sin(x)-1]=0


\sin(x)=0


\implies x=0 \pm2 \pi n, \pi \pm2 \pi n


\implies x=0, \pi \:\sf(for\:the\:given\:interval)


2\sin(x)-1=0


\implies \sin(x)=\frac12


\implies x=(\pi)/(6) \pm2 \pi n, (5\pi)/(6) \pm2 \pi n


\implies x=(\pi)/(6),(5\pi)/(6)\:\sf(for\:the\:given\:interval)

Final solution:


x=0, (\pi)/(6),(5\pi)/(6),\pi \:\sf(for\:the\:given\:interval)

Find all solutions in the interval [0,2pi). 2sin^2(x)=sin(x)-example-1
User Alex Sunder Singh
by
8.6k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories