151k views
2 votes
Let ​ f(x) = 4(x^2) - 3x

​ g(x) = (x^2) - x + 3.
Find ​(f + g)(x), ​(f - ​g)(x), ​(fg)(x), and (Start Fraction f/g , End Fraction )​(x). Give the domain of each.

User MER
by
8.6k points

1 Answer

4 votes

Answer:

(f+g)(x)=5x²-4x+3

(f-g)(x)=3x²-2x+3

(fg)(x)
=4x^4-7x^3+15x^2-9x


(f)/(g)(x)
=(4x^2-3x)/(x^2-x+3)

Explanation:

Given that,

f(x)=4x²-3x

g(x)=x²-x+3

(f+g)(x)

=f(x)+g(x)

=4x²-3x+x²-x+3

=(4x²+x²)+(-3x-x)+3 [ combined the like terms]

=5x²-4x+3

(f-g)(x)

=f(x)-g(x)

=4x²-3x-(x²-x+3)

=4x²-3x-x²+x-3

=(4x²-x²)+(-3x+x)-3 [ combined the like terms]

=3x²-2x+3

(fg)(x)

=f(x).g(x)

=(4x²-3x).(x²-x+3)

=4x²(x²-x+3)-3x(x²-x+3)


=4x^4-4x^3+12x^2-3x^3+3x^2-9x


=4x^4+(-4x^3-3x^3)+(12x^2+3x^2)-9x


=4x^4-7x^3+15x^2-9x


(f)/(g)(x)


=(f(x))/(g(x))


=(4x^2-3x)/(x^2-x+3)

User Aandis
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories