178k views
0 votes
Part 1: Identify the vertex, focus, and directrix of each. Then sketch the graph.

1. y = -2(x -4)^2 - 1

2. x = (y - 1)^2 + 2

User Savi
by
8.8k points

1 Answer

3 votes

Answer:
\bold{1.\quad \text{Vertex}:(4,-1)\qquad \text{Focus}:\bigg(4,-(9)/(8)\bigg)\qquad \text{Directrix}:y=-(7)/(8)}


\bold{2.\quad \text{Vertex}:(2,1)\qquad \text{Focus}:\bigg((9)/(4),1\bigg)\qquad \text{Directrix}:y=(7)/(4)}

Explanation:

The vertex form of a parabola is y = a(x - h)² + k or x = a(y - k)² + h

  • (h, k) is the vertex
  • p is the distance from the vertex to the focus
  • -p is the distance from the vertex to the directrix


\bullet\quad a=(1)/(4p)

1) y = -2(x - 4)² - 1 → a = -2 (h, k) = (4, -1)


a=(1)/(4p)\quad \rightarrow \quad -2=(1)/(4p)\quad \rightarrow \quad p=-(1)/(8)\\\\\text{Focus = Vertex + p}\\\\.\qquad = (-8)/(8)+(-1)/(8)\\\\.\qquad =-(9)/(8)\qquad \rightarrow \qquad \text{Focus}=\bigg(4,-(9)/(8)\bigg)\\\\\\\text{Directrix: y=Vertex - p}\\\\.\qquad \qquad y=(-8)/(8)-(-1)/(8)\\\\.\qquad \qquad y=-(7)/(8)

*******************************************************************************************

2) x = (y - 1)² + 2 → a = 1 (h, k) = (2, 1)


a=(1)/(4p)\quad \rightarrow \quad 1=(1)/(4p)\quad \rightarrow \quad p=-(1)/(4)\\\\\text{Focus = Vertex + p}\\\\.\qquad = (8)/(4)+(1)/(4)\\\\.\qquad =(9)/(4)\qquad \rightarrow \qquad \text{Focus}=\bigg((9)/(4),1\bigg)\\\\\\\text{Directrix: x=Vertex - p}\\\\.\qquad \qquad x=(8)/(4)-(1)/(4)\\\\.\qquad \qquad x=(7)/(4)

Part 1: Identify the vertex, focus, and directrix of each. Then sketch the graph. 1. y-example-1
Part 1: Identify the vertex, focus, and directrix of each. Then sketch the graph. 1. y-example-2
User Beefyhalo
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories