17,768 views
1 vote
1 vote

\int\ (x^3-6x^2+9x+3)(3x^2-12x+9) dx

User Eugene Babich
by
3.3k points

1 Answer

4 votes
4 votes

If the integral is simply


\displaystyle\int(x^3-6x^2+9x+3)(3x^2-12x+9)\,\mathrm dx

then notice that


\mathrm d(x^3-6x^2+9x+3)=(3x^2-12x+9)\,\mathrm dx

which means you can compute the integral easily with a substitution


u=x^3-6x^2+9x+3\implies\mathrm du=(3x^2-12x+9)\,\mathrm dx

Under this transformation, the integral is


\displaystyle\int u\,\mathrm du=\frac{u^2}2+C=\boxed{\frac{(x^3-6x^2+9x+3)^2}2+C}

On the other hand, in case you're missing a symbol and the integral is actually


\displaystyle\int(x^3-6x^2+9x+3)/(3x^2-12x+9)\,\mathrm dx

then first carry out the division:


(x^3-6x^2+9x+3)/(3x^2-12x+9)=\frac x3-\frac23-(2x-9)/(3x^2-12x+9)

Now,
3x^2-12x+9=3(x-3)(x-1), so to integrate the remainder term you can decompose it into partial fractions:


-(2x-9)/(3(x-3)(x-1))=\frac a{x-3}+\frac b{x-1}


9-2x=a(x-1)+b(x-3)


x=1\implies7=-2b\implies b=-\frac72


x=3\implies3=2a\implies a=\frac32


\implies-(2x-9)/(3(x-3)(x-1))=\frac 3{2(x-3)}-\frac 7{2(x-1)}

Then the integral would be


\displaystyle\int(x^3-6x^2+9x+3)/(3x^2-12x+9)\,\mathrm dx=\boxed{\frac{x^2}6-\frac{2x}3+\frac32\ln|x-3|-\frac72\ln|x-1|+C}

which can be rewritten in several ways, such as


\frac{x^2-4x}6+\frac12ln\left|((x-3)^3)/((x-1)^7)\right|+C

User Nil Pun
by
3.4k points