Answer:
![a^2-16a+64](https://img.qammunity.org/2021/formulas/mathematics/college/w8v9aoa8a2a4x0ha9mq25xf1cgypu01cw3.png)
Explanation:
we have the options
![a^2-18a+36\\a^2-16a+64\\a^2-8a+64\\a^2-6a+36](https://img.qammunity.org/2021/formulas/mathematics/college/1xyxqlhlp9t5g6l5579lfpsho4kdn41qbh.png)
the one that is a perfect equare tinomial is:
![a^2-16a+64](https://img.qammunity.org/2021/formulas/mathematics/college/w8v9aoa8a2a4x0ha9mq25xf1cgypu01cw3.png)
because we can rewrite this as follows:
this is because we know that
![x^2-2xy+y^2=(x-y)^2](https://img.qammunity.org/2021/formulas/mathematics/college/bq316xqxxx865vmf1kxychcv23y055c6eg.png)
thus
![a^2-16a+64=(x-8)^2](https://img.qammunity.org/2021/formulas/mathematics/college/gy9aoxwqw31f9u5gsnhrzjjl36yanqhxq0.png)
and the other options cannot be represented as a perfect square trinomial, so the correct answer is:
![a^2-16a+64](https://img.qammunity.org/2021/formulas/mathematics/college/w8v9aoa8a2a4x0ha9mq25xf1cgypu01cw3.png)