Answer:
a) Mean = 382.3 psi
Standard deviation = 20.8 psi
b) 392.7 psi
c) P(X<400)=0.8026
Explanation:
a) The population mean can be estimated as equal to the mean of the sample, and the population standard deviation can be estimated from the sample standard deviation:
![M=(1)/(n)\sum x_i=(1)/(10)(389+405+409+367+358+415+376+375+367+362)\\\\M=(1)/(10)(3823)=382.3\\\\\mu\approx M=382.3](https://img.qammunity.org/2021/formulas/mathematics/college/h5l8pjq7kgn2e867jbup3jmambp5dgtqzy.png)
![s=\sqrt{(1)/(n-1)\sum (x_i-M)^2}=\sqrt{(1)/(10-1)(389-382.3)^2+...+(362-383.2)^2}\\\\\\s=\sqrt{(1)/(9)(3906.1)}=√(434)=20.8\\\\\\\sigma\approx s=20.8](https://img.qammunity.org/2021/formulas/mathematics/college/t6u33856ws2wlrzqho1wnine2xmcn1g1xb.png)
b) We start by searching for the z-value for the 95th percentile. This value is
z=1.645:
![P(z<1.645)=0.95](https://img.qammunity.org/2021/formulas/mathematics/college/7foqs7iotss2g1cq8rc7hid66ilzow4xfx.png)
Then, the strength value below which 95% of all welds will have their strengths is:
![X=\mu+z\cdot \sigma/√(n)=382.3+1.645*20.8/√(10)\\\\X=382.3+32.9/3.2=382.3+10.4\\\\X=392.7](https://img.qammunity.org/2021/formulas/mathematics/college/cghl66gdb4s5hwa548tuwscvqnzfpdmskv.png)
c) We calculate the probability of X being equal or less than 400 as:
![z=(X-\mu)/\sigma=(400-382.3)/20.8=17.7/20.8=0.851\\\\\\P(X\leq400)=P(z<0.851)=0.8026](https://img.qammunity.org/2021/formulas/mathematics/college/5730ki5dd7wc0x50d8ffitacfi1108mcwe.png)