Answer:
Therefore 53.05 mg will remain of the given radioactive substance after 35 hours.
Explanation:
Radioactive Decay:
![(dN)/(dt)\propto N](https://img.qammunity.org/2021/formulas/mathematics/high-school/kklf3p071s66b8861jmz3sf548q129qjux.png)
![\Rightarrow (dN)/(dt)=\lambda N](https://img.qammunity.org/2021/formulas/mathematics/high-school/i0xbbqzmnfpvh0or4kik4g5ky2k625nsn9.png)
![\Rightarrow (dN)/(N)=\lambda dt](https://img.qammunity.org/2021/formulas/mathematics/high-school/o042u2nkus7t8t2i7wvk1vymbh3skbun3b.png)
Integrating both sides
![\int (dN)/(N)=\int\lambda dt](https://img.qammunity.org/2021/formulas/mathematics/high-school/ebq7gp6kd9pmplm4dw6pb3e8h1rlc71x8v.png)
![\Rightarrow ln |N|= \lambda t+c_1](https://img.qammunity.org/2021/formulas/mathematics/high-school/wheqwzrivxutt7f13zkdrdlqwluow6oynt.png)
![\Rightarrow N= e^(\lambda t+c_1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/q08zq5yemgzq3fd18a68eha8hceo8wcioq.png)
![\Rightarrow N= e^(\lambda t).e^(c_1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zkh2tkp2q4jqpjmd84n9u4wkhvezf6cb2x.png)
[
]
When t=0,
= initial amount
![N_0=c e^(\lambda .0)](https://img.qammunity.org/2021/formulas/mathematics/high-school/a6kfi9f8sk5053917fhvmc7423o43s3qyw.png)
![\Rightarrow N_0=c](https://img.qammunity.org/2021/formulas/mathematics/high-school/t2sgq61823qyhrmfu3aeeos7rlcph0kim7.png)
Therefore the decay equation is
![N=N_0e^(\lambda t)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pmhmv3ioudn7immnqlcir76sf5azzqlkk8.png)
Given that,
= Initial amount of the radioactive substance= 140 mg
After 25 hours, 70 mg of substance remains.
N= 70 mg, t=25 hours
![N=N_0e^(\lambda t)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pmhmv3ioudn7immnqlcir76sf5azzqlkk8.png)
![\Rightarrow 70 =140e^(\lambda * 25)](https://img.qammunity.org/2021/formulas/mathematics/high-school/69fwxtgkt27rossx2avpx5qb7ztm40y1cf.png)
![\Rightarrow e^(\lambda * 25)=(70)/(140)](https://img.qammunity.org/2021/formulas/mathematics/high-school/m38ib3ikj0fojm4liuguoeh0y3m9g5cnrj.png)
![\Rightarrow ln|e^(\lambda * 25)|=ln|(1)/(2)|](https://img.qammunity.org/2021/formulas/mathematics/high-school/uzdarsirl6lh8bzs7qqiab9yhldqa4msyt.png)
[
]
![\Rightarrow \lambda =-(ln|2|)/(25)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6jdnpk3o488lm4mz5h96jy9dap2nycio6b.png)
The decay equation becomes
![N=N_0e^)/(25)t](https://img.qammunity.org/2021/formulas/mathematics/high-school/qt004acklqtob1k5aw4sswq5defbt5hq33.png)
Now putting t= 35
![N=140 e^-(ln](https://img.qammunity.org/2021/formulas/mathematics/high-school/wxix2acmmnxsd5d97hoamt6llsuhw2pkh6.png)
= 53.05 mg
Therefore 53.05 mg will remain of the given radioactive substance after 35 hours.