Answer:
0.148 or 14.80%
Explanation:
Mean overhead reach (μ) = 200 cm
Standard deviation (σ) = 8.9 cm
The z-score for any reach, X, is given by:
![z=(X-\mu)/(\sigma)](https://img.qammunity.org/2021/formulas/mathematics/college/s76xupx8g2c45nsiev2fz1uotrmju22fhw.png)
For a X = 209.30 cm:
![z=(209.3-200)/(8.9)\\ z=1.045](https://img.qammunity.org/2021/formulas/mathematics/college/6twq2xlxndmzfzyasouw55yd6es0bbnaq5.png)
A z-score of 1.045 corresponds to the 85.20th percentile.
Therefore, the probability that an individual distance is greater than 209.30 cm is:
![P = 1-0.8520\\P=0.148=14.80\%](https://img.qammunity.org/2021/formulas/mathematics/college/574cimew8to45ilww13ftl97h8xt415b45.png)
The probability is 0.148 or 14.80%